بررسی اثر چیدمان ورق‌های CFRPدر مقاوم‌سازی دیوارهای بتنی در برابر بار انفجار

بررسی اثر چیدمان ورق‌های CFRPدر مقاوم‌سازی دیوارهای بتنی در برابر بار انفجار

از پیدایش تکنولوژی انفجار و دانش مربوط به بارهای انفجاری مدت زیادی می‌گذرد. در این مدت پژوهش‌های نظری و آزمایشگاهی بسیاری توسط مهندسان و دانشمندان بر روی مصالح و بارهای انفجاری انجام‌شده است. امروزه با گسترش تأسف‌بار حملات تروریستی، تحلیل و طراحی سازه‌های مقاوم در برابر انفجار نیز توسعه‌یافته است و آئین‌نامه‌های متعددی توسط مراجع مختلف برای تحلیل و طراحی انفجاری ارائه‌شده است. از طرفی با پیدایش مصالح نوین، گسترش کاربرد آن‌ها در مهندسی عمران و کاربری مناسب آن‌ها در بهسازی سازه‌های موجود، چشم‌انداز جدیدی در جهت مقابله با این وقایع فراهم‌شده است.
این پژوهش به بررسی کارایی استفاده از مصالح مرکب بر عملکرد دیوارهای بتنی در برابر انفجار پرداخته است. بدین‌صورت که دیوار بتنی مقاوم‌سازی شده با پلیمرهای مسلح با الیاف کربنی (CFRP) تحت اثر بار انفجاری قرارگرفته است. CFRP های بکار گرفته‌شده شامل رزین از جنس اپوکسی و الیاف از جنس کربن می‌باشند. در این پژوهش بار انفجاری، ابعاد دیوار و شرایط تکیه‌گاهی ثابت فرض شده و تأثیر چیدمان الیاف کربنی و ضخامت ورق CFRP در حالت‌های مختلف بررسی‌شده است. برای مدل‌سازی، تحلیل و پردازش نتایج از نرم‌افزار Abaqus استفاده‌شده است. پس از انجام تحلیل، نحوه و مقدار توزیع پارامترهایی نظیر تغییر مکان و تخریب در مدل‌ها محاسبه و مورد مقایسه قرارگرفته و نواحی بحرانی شناسایی و معرفی‌شده است. به‌کارگیری روش چیدمان‌های نواری در مقابل پوشش کامل دیوار بر عملکرد رفتار سازه در برابر بار انفجارموثر بوده موجب کاهش در میزان تغییر مکان بیشینه و نشانه خسارت می‌شود.

مدل‌سازی و مصالح کاربردی

سازه‌های موردبررسی در این پژوهش دیوارهای بتنی مسلح به شکل مربع و تقویت‌شده با ورق‌های CFRP می‌باشند. این دیوارها بر روی دو تکیه‌گاه ساده مقید شده و تشکیل یک دال یک‌طرفه را می‌دهند. سازه‌ها تحت اثر فشار یکنواخت و تابع زمان ضرب‌های ناشی از یک انفجار بارگذاری شده، تغییر شکل و میزان خسارت در آن‌ها با توجه به نحوه‌ی چیدمان الیاف و ضخامت الیاف مقایسه می‌شوند.

مدل‌سازی

سازه‌های موردبررسی دیوارهای بتنی به ابعاد 3×3مترمربع و باضخامت 200میلی‌متر می‌باشند. این دیوارها در دولایه به‌وسیله‌ی شبکه میلگردهای فولادی به قطر 10میلی‌متر در فاصله‌های 150میلی‌متری مسلح شده‌اند. دیوارهای فوق در دو سمت پشت‌ورو با ورق‌های CFRP باضخامت‌های متفاوت تقویت‌شده‌اند. با توجه به نسبت کوچک ضخامت به ابعاد سازه برای مدل‌سازی از المان پوسته S4R استفاده گردیده است. عملکرد دیوارها به‌صورت یک‌طرفه فرض شده است. تقویت دیوارها با توجه به درصد پوشش الیاف به سه صورت %75 ، %100 و %50 تقسیم‌بندی شده که در هر حالت این درصد پوشش توسط سه دسته، پنج دسته و هفت دسته نوار مشخص‌شده‌اند.
شکل 1تصویر محل قرارگیری تکیه‌گاه‌ها نحوه‌ی بارگذاری دیوارها را نمایش می‌دهد. جهت ایجاد شرایط تکیه‌گاهی مناسب، ورق‌های CFRP در فاصله 200 میلی‌متری از تکیه‌گاه‌ها متوقف‌شده‌اند. ابعاد هر المان مورداستفاده در مش بندی 200×200 میلی‌مترمربع می‌باشد. ورق‌های CFRP در دو سطح‌رو به انفجار و پشت به انفجار بر روی دیوارها قرارگرفته و به‌صورت کامل (بدون لغزش) در تحمل تنش‌ها شرکت می‌کنند. شکل 2 تصویر انواع چیدمان قرارگیری ورق‌های CFRP بر روی دیوار بتنی مسلح مرجع را که در این پژوهش موردبررسی قرارگرفته، نمایش می‌دهد.

ویژگی مصالح

CFRP: ماده مرکب بکار گرفته‌شده در این پژوهش CFRP است. رزین مورداستفاده از نوع اپوکسی و الیاف از جنس‌های کربن(T300) می‌باشد. به‌منظور بررسی اثر تغییر ضخامت بر پارامترها، ضخامت ورق‌های CFRP در نظر گرفته‌شده 1.5 ،0.5 و 6 میلی‌متر است. CFRP های مورداستفاده دارای رفتار کشسان خطی بوده و ویژگی‌های مکانیکی آن‌ها در جدول‌های 1 تا 3 ارائه‌شده است.

بتن: مقاومت فشاری بتن در پژوهش 35 مگا پاسکال در نظر گرفته‌شده است. برای مدل‌سازی بتن در ناحیه پلاستیک و بررسی تخریب در آن از مدل خسارت مومسانی بتن (Concrete Damage Plasticity) استفاده‌شده است. مقادیر تنش و کرنش پلاستیک موردنیاز در این مدل از گزارش نتایج پژوهش‌های آزمایشگاهی پیشین گرفته‌شده است. مشخصات مورداستفاده برای مدل‌سازی بتن در جدول‌های 4 و 5 ارائه‌شده است

فولاد: با در نظر گرفتن این مسئله که میلگردهای بکار رفته در دیوارهای بتنی تحت بار انفجار وارد ناحیه مومسانی خود می‌شوند، در مورد شبیه‌سازی رفتار فولاد بایستی هر دو ناحیه کشسان و مومسان را در نظر گرفته و اطلاعات موردنظر در هر دو ناحیه در اختیار نرم‌افزار قرار گیرد. در ناحیه کشسان، ضریب کشسانی 210 گیگاپاسکال، ضریب پواسان 0/3 و چگالی نسبی 7/8 فرض می‌شود. ویژگی‌های فولاد در ناحیه مومسان در جدول 6 آورده شده است.

بارگذاری

بارگذاری انفجاری به دو پارامتر زمان و مکان وابسته است. در این پژوهش برای ساده‌سازی و کاهش زمان عملیات شبیه‌سازی رایانه‌ای مدل‌ها از وابستگی مکانی بارگذاری صرف‌نظر شده و تنها به توزیع زمانی بار پرداخته‌شده است. به سخن دیگر، توزیع فشار ناشی از انفجار به‌صورت یک فشار یکنواخت ولی تابع زمان‌بر روی سطح دیوار اعمال شد. این امر را می‌توان با استناد به آیین‌نامه انفجار انجمن ساخت سازه‌های فولادی آمریکا (AISC) موردقبول دانست. بر طبق این آیین‌نامه، اگر فاصله محل انفجار تا سازه از نصف کوچک‌ترین بعد سازه بیشتر شود می‌توان با فرضی مناسب فشار وارده بر دیوار را به‌صورت یکنواخت در نظر گرفت. در این مطالعه، فشار اعمالی هم‌ارز با فشار ناشی از انفجار 9/5کیلوگرم TNT در فاصله 2/5متر از سازه در نظر گرفته‌شده است. فشار وارده در طول زمان کل 0/02 ثانیه به شکل ذوزنقه اعمال‌شده که در جدول 7 نمایش داده‌شده است.

تحلیل و بررسی یافته‌ها

برای تحلیل مدل‌ها از تحلیلگر صریح (Explicit) نرم‌افزار Abaqus استفاده‌شده است. از این تحلیلگر در مواردی که هدف، تحلیل دینامیکی مدل در زمان بسیار اندک موردنظر باشد، استفاده می‌گردد. در طی تحلیل رفتار دیوار برای مدت 0/05 ثانیه ثبت گردیده است. بیشینه پارامترهای موردنظر در هر مدل محاسبه و نتایج مربوطه در مدل‌های تقویت‌شده با چیدمان‌های مختلف CFRP در ضخامت‌های ورق متفاوت با یکدیگر مقایسه شده است. پارامترهای تغییر مکان، تخریب بتن موردبررسی قرارگرفته‌اند.

تحلیل

ابتدا دیوار بتنی مسلح مرجع مدل‌سازی شد، پس از تحلیل میزان تغییر مکان بیشینه به همراه حداکثر خسارت در بتن تعیین گشت. سپس دیوارهای تقویت‌شده با ورق‌های CFRP در چیدمان‌ها و درصد پوشش‌های متفاوت در ضخامت‌های مختلف مدل‌سازی و تحلیل شد. با مقایسه‌ی نتایج به‌دست‌آمده پس از تحلیل دیوارهای تقویت‌شده با دیوار مرجع، کارایی روش مقاوم‌سازی و پارامترهای بهینه حاصل می‌شود.

 

 بررسی یافته‌ها

پارامترهایی که برای مقایسه بین رفتار دیوارهای مقاوم‌سازی شده انتخاب شدند عبارت است از: تغییر مکان بیشینه و نشانه تخریب . بدیهی است که یک سامانه مقاوم‌سازی مطلوب می‌بایست تغییر شکل سازه را محدود نموده اثرات تخریب در بتن را کاهش دهد.

تغییر مکان بیشینه: با برسی مقادیر ارائه‌شده در جدول‌های سه گانه ۸ ، اثر به‌کارگیری ورق‌های CFRP باضخامت‌های مختلف و درصد پوشش متفاوت با توجه به تعداد لایه‌ها، در مقاوم‌سازی دیوار بتنی واضح است. تأثیر روش مقاوم‌سازی به‌گونه‌ای است که تغییر مکان بیشینه دیوار -که مربوط به منطقه میانی آن می‌باشد- در حالت مقاوم‌سازی نشده از حدود 95 میلی‌متر به 0/5 میلی‌متر در بهترین حالت مقاوم‌سازی کاهش می‌یابد. با مقایسه مقادیر تغییر مکان و ضخامت ورق CFRP استفاده‌شده رابطه وارونه میزان ضخامت با مقادیر بیشینه تغییر مکان مشخص می‌شود که با افزایش ضخامت ورق CFRP بیشینه تغییر مکان حاصل کاهش می‌یابد.
تغییرات بیشینه‌ی تغییر مکان به‌صورت مشهودی با درصد پوشش الیاف متغییر است این اثر با افزایش ضخامت نمایان‌تر است به‌طوری‌که بیشینه‌ی تغییر مکان در ضخامت 1.5 میلی‌متر در پوشش %100 از حدود 35.1 میلی‌متر به 77.4 میلی‌متر در پوشش %50 افزایش می‌یابد . تغییرات بیشینه‌ی تغییر مکان در در صدهای پوشش متفاوت می‌تواند با تغییر در ضخامت جبران شود. بدون‌های که بیشینه‌ی تغییر مکان در در صد پوشش %100 در ضخامت 0.5 میلی‌متر در حدود 74 میلی‌متر بوده که این تغییر مکان در پوشش %50 با افزایش ضخامت 1.5 میلیمتر به 77.4 میلیمتر، ودرهمان درصد پوشش باضخامت 6 میلیمتر به حداقل مقدار 64.3 میلیمتر کاهش می‌یابد. در بررسی رفتار چیدمان نواری بکار گرفته‌شده مشاهده می‌شود که افزایش تعداد نوارها در بهبود عملکرد دیوار مؤثر است. تأثیر به‌کارگیری این روش مقاوم‌سازی بدون‌های است که در تمام درصدهای پوشش ارائه‌شده با افزایش تعداد نوارها وبطبع آن کاهش عرض نوار تغییر مکان بیشینه دیوار کاهش می‌یابد

نشانه تخریب: مقادیر تخریب دیوارهای مدل‌سازی شده در جدول‌های سه گانه 9 آمده است. نشانه تخریب را می‌توان به‌عنوان نسبت مساحت آسیب‌دیده به مساحت سالم دیوار تعریف نمود که با این توصیف این نشانه می‌تواند مقداری بین صفر و یک را دارا باشد. صفر مربوط به محیط کاملاً سالم و یک متعلق به محیط کاملاً تخریب دیده می‌باشد. معمولاً به جهت جلوگیری از ناپایداری‌های عددی نرم‌افزار مقدار تخریب را بیش از 0/99 گزارش نمی‌نماید.
همان‌طور که ملاحظه می‌شود، مقادیر تخریب ارائه‌شده باضخامت ورق‌های CFRP نسبت وارونه دارد و با افزایش آن میزان تخریب به‌صورت مشهودی کاهش می‌یابد. تخریب گزارش‌شده برای دیوار بتنی مرجع برابر 83 درصد می‌باشد که می‌توان آن را یک تخریب نسبتاً زیاد در نظر گرفت درحالی‌که با استفاده از ورق‌های CFRP این میزان تخریب را می‌توان تا مقدار نسبتاً اندک 19 درصد کاهش داد. به‌کارگیری روش مقاوم‌سازی به‌صورت نواری منجر به بهبود عملکرد رفتار دیوار می‌شود به‌گونه‌ای که با افزایش تعداد نوارها در هر درصد پوشش میزان خسارت کاهش می‌یابد.

نتیجه‌گیری

از بررسی رفتار دیوارهای بتنی مسلح تقویت‌شده با ورق‌های CFRP در برابر انفجار به‌وسیله نرم‌افزار المان محدود، نتایج زیر قابل‌بیان می‌باشد:

  • مقاوم‌سازی با استفاده از ورق‌های CFRP تأثیر قابل‌توجه ای بر عملکرد رفتار سازه در برابر بار انفجاری داشته و تغییر مکان بیشینه و نشانه خسارت را کاهش می‌دهد.
  • به‌کارگیری چیدمان‌های نواری در مقابل پوشش کامل دیوار بر عملکرد رفتار سازه در برابر بار انفجارموثر بوده و در کاهش تغییر مکان بیشینه و نشانه خسارت مؤثر است.
  • کاهش سطح پوشش الیاف همراه با افزایش ضخامت می‌تواند عملکرد مشابهی از جهت تغییر مکان بیشینه و نشانه خسارت در مقایسه با پوشش کامل سطح باضخامت نازک‌تر داشته باشد.
  • استفاده از آزمایش‌ها تجربی می‌تواند ضمن تائید صحت این مدل‌سازی، در شناسایی خطاها و کم دقتی‌های احتمالی مفید واقع شود.
  • در نظر گرفتن توزیع مکانی بار انفجار در کنار توزیع زمانی موجب بالا رفتن دقت محاسبات خواهد شد.

این مقاله به همت محیا فاضلی پور ،محمدرضا توکلی زاده تهیه شده است

5/5 - (2 امتیاز)
به اشتراک بگذارید:
تیم تحریریه افزیر

این محتوا توسط تیم مجرب تولید محتوا افزیر تولید و منتشر شده است.

پرسش و پاسخ


بدون دیدگاه

دیدگاه خود را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

Insert math as
Block
Inline
Additional settings
Formula color
Text color
#333333
Type math using LaTeX
Preview
\({}\)
Nothing to preview
Insert